10 research outputs found

    Performance of lightweight granulated glass concrete beams reinforced with basalt FRP bars

    Get PDF
    This paper presents an investigation into the flexural behaviour of basalt FRP reinforced concrete beams through experimental and analytical methods. To achieve the research objectives, four concrete beams reinforced with steel and four identical concrete beams reinforced with BFRP bars were tested under four-point bending. The main parameters examined under the tests are the type of concrete (lightweight foam glass concrete and normal concrete) and the type of longitudinal reinforcement bars (BFRP and steel). Test results are presented in terms of failure modes; deformation crack pattern and the ultimate moment of resistance are presented. The experimental results are analysed and compared to predictive models proposed by ACI 440.1R, 2006 and BS EN 1992, Eurocode 2, for deformations and ultimate flexural capacities of the steel and BFRP reinforced concrete beams. The experimental results indicated that the flexural capacity decreased for the beams reinforced with BFRP bars compared to that of a corresponding beam reinforced with steel bars. Both types of beams failed in the modes predicted. The prediction models underestimated the flexural capacity of BFRP reinforced concrete beams. The increase in foam glass aggregate content was observed to reduce the cracking load by almost 10-40% and 25-50% for steel and BFRP reinforced concrete beams, respectively. The flexural capacities of BFRP reinforced beams were underestimated by using equations stipulated in ACI 440.1R and Eurocode 2 codes of practice. © 2019 Growing Science Ltd. All rights reserved

    Irregular Shape Effect of Brass and Copper Filler on the Properties of Metal Epoxy Composite (MEC) for Rapid Tooling Application

    Get PDF
    Due to their low shrinkage and easy moldability, metal epoxy composites (MEC) are recognized as an alternative material that can be applied as hybrid mold inserts manufactured with rapid tooling (RT) technologies. Although many studies have been conducted on MEC or reinforced composite, research on the material properties, especially on thermal conductivity and compressive strength, that contribute to the overall mold insert performance and molded part quality are still lacking. The purpose of this research is to investigate the effect of the cooling efficiency using MEC materials. Thus, this research aims to appraise a new formulation of MEC materials as mold inserts by further improving the mold insert performance. The effects of the thermal, physical, and mechanical properties of MEC mold inserts were examined using particles of brass (EB), copper (EC), and a combination of brass + copper (EBC) in irregular shapes. These particles were weighed at percentages ranging from 10% to 60% when mixed with epoxy resin to produce specimens according to related ASTM standards. A microstructure analysis was made using a scanning electron microscope (SEM) to investigate brass and copper particle distribution. When filler composition was increased from 10% to 60%, the values of density (g/cm3), hardness (Hv), and thermal conductivity (W/mK) showed a linear upward trend, with the highest value occurring at the highest filler composition percentage. The addition of filler composition increased the compressive strength, with the highest average compressive strength value occurring between 20% and 30% filler composition. Compressive strength indicated a nonlinear uptrend and decreased with increasing composition by more than 30%. The maximum value of compressive strength for EB, EC, and EBC was within the range of 90–104 MPa, with EB having the highest value (104 MPa). The ANSYS simulation software was used to conduct a transient thermal analysis in order to evaluate the cooling performance of the mold inserts. EC outperformed the EB and EBC in terms of cooling efficiency based on the results of thermal transient analysis at high compressive strength and high thermal conductivity conditions

    Corneal confocal microscopy detects a reduction in corneal endothelial cells and nerve fibres in patients with acute ischemic stroke

    Get PDF
    YesEndothelial dysfunction and damage underlie cerebrovascular disease and ischemic stroke. We undertook corneal confocal microscopy (CCM) to quantify corneal endothelial cell and nerve morphology in 146 patients with an acute ischemic stroke and 18 age-matched healthy control participants. Corneal endothelial cell density was lower (P<0.001) and endothelial cell area (P<0.001) and perimeter (P<0.001) were higher, whilst corneal nerve fbre density (P<0.001), corneal nerve branch density (P<0.001) and corneal nerve fbre length (P=0.001) were lower in patients with acute ischemic stroke compared to controls. Corneal endothelial cell density, cell area and cell perimeter correlated with corneal nerve fber density (P=0.033, P=0.014, P=0.011) and length (P=0.017, P=0.013, P=0.008), respectively. Multiple linear regression analysis showed a signifcant independent association between corneal endothelial cell density, area and perimeter with acute ischemic stroke and triglycerides. CCM is a rapid non-invasive ophthalmic imaging technique, which could be used to identify patients at risk of acute ischemic stroke.Qatar National Research Fund Grant BMRP2003865

    A study on two plate and three plate mold of ultra thin plates in minimizing warpage issue

    No full text
    The demand of ultra thin plastic parts in global industries is increasing today. Ultra thin plastic parts are widely produced using injection molding processes and it is understood that warpage issue is regularly found in producing these parts. This situation happens due to lacking of knowledge in selecting the best injection molding parameters to produce parts with minimal warpage. In addition, designers also have difficulties to control the parameters since the 0.3mm thickness of the ultra thin parts is too hard to maintain. Therefore this study is performed purposely to determine the best parameters can be selected in manufacturing ultra thin plates. Two types of gating systems which are side gate for 2-plate mold and pin point gate for 3-plate mold are tested. The results are obtained using Taguchi Method and Analysis of Variance (ANOVA) and run through simulation software. Both parameters are then compared with each other in recommending molding designers which is the best to be applied at mold design stage. Results from this research recommend using pin-point gate for 3-plate mold using the outlined parameter setting in order to obtain the minimal warpage of ultra thin wall plastic plates

    The potential of metal epoxy composite (MEC) as hybrid mold inserts in rapid tooling application: a review

    No full text
    Purpose Rapid tooling (RT) integrated with additive manufacturing technologies have been implemented in various sectors of the RT industry in recent years with various kinds of prototype applications, especially in the development of new products. The purpose of this study is to analyze the current application trends of RT techniques in producing hybrid mold inserts. Design/methodology/approach The direct and indirect RT techniques discussed in this paper are aimed at developing a hybrid mold insert using metal epoxy composite (MEC) in increasing the speed of tooling development and performance. An extensive review of the suitable development approach of hybrid mold inserts, material preparation and filler effect on physical and mechanical properties has been conducted. Findings Latest research studies indicate that it is possible to develop a hybrid material through the combination of different shapes/sizes of filler particles and it is expected to improve the compressive strength, thermal conductivity and consequently increasing the hybrid mold performance (cooling time and a number of molding cycles). Research limitations/implications The number of research studies on RT for hybrid mold inserts is still lacking as compared to research studies on conventional manufacturing technology. One of the significant limitations is on the ways to improve physical and mechanical properties due to the limited type, size and shape of materials that are currently available. Originality/value This review presents the related information and highlights the current gaps related to this field of study. In addition, it appraises the new formulation of MEC materials for the hybrid mold inserts in injection molding application and RT for non-metal products

    Impact of the SARS-CoV-2 nucleocapsid 203K/204R mutations on the inflammatory immune response in COVID-19 severity

    No full text
    Abstract Background The excessive inflammatory responses provoked by SARS-CoV-2 infection are critical factors affecting the severity and mortality of COVID-19. Previous work found that two adjacent co-occurring mutations R203K and G204R (KR) on the nucleocapsid (N) protein correlate with increased disease severity in COVID-19 patients. However, links with the host immune response remain unclear. Methods Here, we grouped nasopharyngeal swab samples of COVID-19 patients into two cohorts based on the presence and absence of SARS-CoV-2 nucleocapsid KR mutations. We performed nasopharyngeal transcriptome analysis of age, gender, and ethnicity-matched COVID-19 patients infected with either SARS-CoV-2 with KR mutations in the N protein (KR patients n = 39) or with the wild-type N protein (RG patients n = 39) and compared to healthy controls (n = 34). The impact of KR mutation on immune response was further characterized experimentally by transcriptomic and proteomic profiling of virus-like-particle (VLP) incubated cells. Results We observed markedly elevated expression of proinflammatory cytokines, chemokines, and interferon-stimulated (ISGs) genes in the KR patients compared to RG patients. Using nasopharyngeal transcriptome data, we found significantly higher levels of neutrophils and neutrophil-to-lymphocyte (NLR) ratio in KR patients than in the RG patients. Furthermore, transcriptomic and proteomic profiling of VLP incubated cells confirmed a similar hyper-inflammatory response mediated by the KR variant. Conclusions Our data demonstrate an unforeseen connection between nucleocapsid KR mutations and augmented inflammatory immune response in severe COVID-19 patients. These findings provide insights into how mutations in SARS-CoV-2 modulate host immune output and pathogenesis and may contribute to more efficient therapeutics and vaccine development

    Detection of microplastics in human colectomy specimens

    No full text
    Abstract Background and Aim While dietary exposure to microplastics is increasingly recognized, it is unknown if ingested plastics remain within the digestive tract. We aimed to examine human colectomy specimens for microplastics and to report the characteristics as well as polymer composition of the particles. Methods Colectomy samples were obtained from 11 adults (mean age 45.7, six males) who were residents of Northeastern Peninsular Malaysia. Microplastics were identified following chemical digestion of specimens and subsequent filtration. The samples were then examined for characteristics (abundance, length, shape, and color) and composition of three common polymer types using stereo‐ and Fourier Transform InfraRed (FTIR) microscopes. Results Microplastics were detected in all 11 specimens with an average of 331 particles/individual specimen or 28.1 ± 15.4 particles/g tissue. Filaments or fibers accounted for 96.1% of particles, and 73.1% of all filaments were transparent. Out of 40 random filaments from 10 specimens (one had indeterminate spectra patterns), 90% were polycarbonate, 50% were polyamide, and 40% were polypropylene. Conclusion Our study suggests that microplastics are ubiquitously present in the human colon
    corecore